Dynamic control of light waves of magnetism

0


  • 1.

    Ørstedt, JC Experimenta circa effectum conflictus electrici in acum Magneticam. J. Chem. Physical. 29, 275-281 (1820).

    Google Scholar

  • 2.

    Schiffrin, A. et al. Current induced by optical field in dielectrics. Nature 493, 70-74 (2013); Addendum 507, 386-387 (2014).

    ADS
    Item

    Google Scholar

  • 3.

    Schultze, M. et al. Attosecond band gap dynamics in silicon. Science 346, 1348-1352 (2014).

    ADS
    CASE
    Item

    Google Scholar

  • 4.

    Mashiko, H., Oguri, K., Yamaguchi, T., Suda, A. & Gotoh, H. Petahertz optical drive with wide band gap semiconductor. Nat. Physical. 12, 741-745 (2016).

    CASE
    Item

    Google Scholar

  • 5.

    Lucchini, M. et al. Attosecond dynamic Franz-Keldysh effect in polycrystalline diamond. Science 353, 916-919 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 6.

    Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359-363 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 7.

    Reimann, J. et al. Sub-cycle observation of Dirac currents induced by light waves in a topological surface band. Nature 562, 396-400 (2018).

    ADS
    CASE
    Item

    Google Scholar

  • 8.

    Bigot, J.-Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Physical. 5, 515-520 (2009).

    CASE
    Item

    Google Scholar

  • 9.

    Boeglin, C. et al. Distinguish the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458-461 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • ten.

    Walowski, J. & Münzenberg, M. Ultrafast magnetism and THz spintronics. J. Appl. Physical. 120, 140901 (2016).

    ADS
    Item

    Google Scholar

  • 11.

    Koopmans, B. et al. Explain the paradoxical diversity of ultra-rapid laser-induced demagnetization. Nat. Mother. 9, 259-265 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • 12.

    Hellman, F. et al. Phenomena induced by the interface in magnetism. Rev. Mod. Physical. 89, 025006 (2017).

    ADS
    MathSciNet
    Item

    Google Scholar

  • 13.

    Kirilyuk, A., Kimel, AV & Rasing, T. Ultrafast optical manipulation of the magnetic order. Rev. Mod. Physical. 82, 2731-2784 (2010).

    ADS
    Item

    Google Scholar

  • 14.

    Battiato, M., Carva, K. & Oppeneer, PM Superdiffusive spin transport as an ultrafast demagnetization mechanism. Phys. Rev. Lett. 105, 027203 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • 15.

    Stamm, C. et al. Femtosecond modification of the location of electrons and transfer of angular momentum in nickel. Nat. Mother. 6, 740-743 (2007).

    ADS
    CASE
    Item

    Google Scholar

  • 16.

    Rudolf, D. et al. Improved ultrafast magnetization in metallic multilayers driven by superdiffusive spin current. Nat. Common. 3, 1037 (2012).

    ADS
    Item

    Google Scholar

  • 17.

    Dewhurst, JK, Elliott, P., Shallcross, S., Gross, EKU & Sharma, S. Laser-induced intersite spin transfer. Nano Lett. 18, 1842-1848 (2018).

    ADS
    CASE
    Item

    Google Scholar

  • 18.

    Lambert, C.-H. et al. All optical control of thin ferromagnetic films and nanostructures. Science 345, 1337–1340 (2014).

    ADS
    CASE
    Item

    Google Scholar

  • 19.

    Bandrauk, AD, Guo, J. & Yuan, K.-J. Generation of circularly polarized attosecond pulses and applications to ultrafast magnetism. J. Opt. 19, 124016 (2017).

    ADS
    Item

    Google Scholar

  • 20.

    Laman, N., Bieler, M. & van Driel, HM Ultrafast offset and injection currents observed in wurtzite semiconductors via emitted terahertz radiation. J. Appl. Physical. 98, 103507 (2005).

    ADS
    Item

    Google Scholar

  • 21.

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509-513 (2001).

    ADS
    CASE
    Item

    Google Scholar

  • 22.

    Schweinberger, W. et al. Waveform-driven, near-single-cycle millijoule laser pulses generate extreme ultraviolet continua below 10nm. Opt. Lett. 37, 3573-3575 (2012).

    ADS
    Item

    Google Scholar

  • 23.

    Fieß, M. et al. Versatile device for attosecond metrology and spectroscopy. Rev. Sci. Instrument. 81, 093103 (2010).

    ADS
    Item

    Google Scholar

  • 24.

    Carra, P., Thole, BT, Altarelli, M. & Wang, X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694-697 (1993).

    ADS
    CASE
    Item

    Google Scholar

  • 25.

    Höchst, H., Patel, R. & Middleton, F. Multiple reflection ??4 phase shifters: a viable alternative to generate circularly polarized synchrotron radiation. Nucl. Instrument. meth. A 347, 107–114 (1994).

    ADS
    Item

    Google Scholar

  • 26.

    Willems, F. et al. Probe ultrafast spin dynamics with high harmonic magnetic circular dichroism spectroscopy. Phys. Rev. B 92, 220405 (2015).

    ADS
    Item

    Google Scholar

  • 27.

    Kaindl, G., Brewer, WD, Kalkowski, G. & Holtzberg, F. M-edge X-ray absorption spectroscopy: a new tool for dilution of mixed-valent materials. Phys. Rev. Lett. 51, 2056-2059 (1983).

    ADS
    CASE
    Item

    Google Scholar

  • 28.

    Ghimire, S. et al. Physics of strong and attosecond fields in solids. J. Phys. B 47, 204030 (2014).

    ADS
    Item

    Google Scholar

  • 29.

    Dewhurst, JK, Shallcross, S., Gross, EKU & Sharma, S. Ultrafast spin injection and substrate controlled demagnetization. Phys. Rev. Appl. ten, 044065 (2018).

    ADS
    CASE
    Item

    Google Scholar

  • 30.

    Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin charge quantum excitations. Nature 496, 69-73 (2013).

    ADS
    CASE
    Item

    Google Scholar

  • 31.

    Runge, E. & Gross, EKU Functional density theory for time-dependent systems. Phys. Rev. Lett. 52, 997-1000 (1984).

    ADS
    CASE
    Item

    Google Scholar

  • 32.

    Krieger, K. et al. Ultrafast mass demagnetization versus thin films: an ab initio study. J. Phys. Condense. Question 29, 224001 (2017).

    ADS
    CASE
    Item

    Google Scholar

  • 33.

    von Barth, U. & Hedin, L. A local exchange correlation potential for the spin-polarized case. J. Phys. VS 5, 1629-1642 (1972).

    ADS
    Item

    Google Scholar

  • 34.

    Hedin, L. New method of calculating the one-particle Green function with application to the electron-gas problem. Phys. Tower. 139, A796 – A823 (1965).

    ADS
    Item

    Google Scholar

  • 35.

    Sharma, S., Dewhurst, JK, Sanna, A. & Gross, EKU Bootstrap approximation for the exchange correlation kernel of the time-dependent density functional theory. Phys. Rev. Lett. 107, 186401 (2011).

    ADS
    CASE
    Item

    Google Scholar

  • 36.

    Dewhurst, K. et al. The Elk code FP-LAPW. http://elk.sourceforge.net/ (2018).

  • 37.

    Fuggle, JC & MÃ¥rtensson, N. Binding energies at the nucleus level in metals. J. Electron. Spectrosis. 3, 275-281 (1980).

    Item

    Google Scholar

  • 38.

    Henke, BL, Gullikson, EM & Davis, JC X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50-30,000 eV, Z = 1–92. TO. Nucl data. Data tables 54, 181-342 (1993).

    ADS
    CASE
    Item

    Google Scholar

  • 39.

    Schultze, M. et al. Control of dielectrics with the electric field of light. Nature 493, 75-78 (2013).

    ADS
    Item

    Google Scholar


  • Share.

    About Author

    Comments are closed.